Meeting Banner
Abstract #4444

Sparse Sampling Phase Contrast Imaging of the Aorta

Zhiyue J. Wang1, 2, Jonathan M. Chia3, David M. Higgins4, Youngseob Seo2, 5, Nancy K. Rollins1, 2

1Childrens Medical Center, Dallas, TX, United States; 2Univeristy of Texas Southwestern, Dallas, TX, United States; 3Philips Healthcare, Cleveland, OH, United States; 4Philips Healthcare, Guildford, Surrey, United Kingdom; 5Division of Convergence Technology, Korea Research Institute of Standards and Science, Daejeon, Korea

This work looks at the feasibility of performing sparse sampling in high resolution phase contrast imaging using a unique subtraction reconstruction algorithm. Images were sparsely sampled at 45, 36, and 30% and compared against a fully sampled image through region of interest analysis. Under sampled data showed slight underestimation of quantitative values while still maintaining an accurate flow curve behavior. Physiologic fluctuations and the intrinsic nature of under sampling, most likely, lead to this discrepancy. Sparse sampling techniques have been shown to be very promising in achieving accurate quantitative data while reducing scan times significantly.

Keywords

accelerations acceptable achieving acquisition acquisitions actual agreement aorta aortic application applying ascending audience background basic better canceling cardiac cardiovascular causes certain characteristics cine clearly clinical clinically close closest comparing compress compressed computer contained contrast convergence curve curves custom dataset degradation degrees desiring determine developed diagnostic division done encoded encoding error even exhibit exhibits extremely facts fall fast feasibility feasible flow fluctuations flux fully furthermore heart implementation inconsistencies institute insufficient interior internally investigation investigations investigators kingdom known least lengthy likely lists medical needed noticeable opposite optimal outside particular patient physiologic populations potentially promising prospectively quality quantification quantitative random rapid reason reasons reconstructed regularized regurgitation relevant reliably required resolution respectively sampled sampling scale scheme schemes science selected sensing slice slightly software southwestern space sparse sparsely sparser spatial squares still stroke structures surprisingly surrey system table target technology though triggered triggering typical unclear underestimation variability velocity volume volunteer volunteers