Meeting Banner
Abstract #4443

Improved Visualization and Quantification of 4D Flow MRI Data Using Divergence-Free Wavelet Denoising

Frank Ong1, Martin Uecker1, Umar Tariq2, Albert Hsiao2, Marcus T. Alley2, Shreyas S. Vasanawala2, Michael Lustig1

1University of California, Berkeley, Berkeley, CA, United States; 2Stanford University, Palo Alto, CA, United States

A novel noise reduction processing for 4D flow MRI data using divergence-free wavelet transform is presented. Divergence-free wavelets have the advantage of enforcing soft divergence-free conditions when discretization and partial voluming result in numerical non-divergence-free components and at the same time, provide sparse representation of flow in a generally divergence-free field. Efficient denoising is achieved by appropriate shrinkage of divergence-free and non-divergence-free wavelet coefficients. To verify its performance, the proposed processing was applied on in vivo data sets and was demonstrated to improve visualization of flow data without distorting quantifications.

Keywords

absolute adaptive addition adjust alley allows alto aorta applied appropriate approximately approximation arising axial blood captured cardiac clinical closeup coefficients color combinations complexity components computationally consistency constraints core corrected cross cutoff defined differentiation discrete distorting divergence domain done eddy edges effective eliminating encourage enforce enforcing enhance equal error evenly example fast field flow fraction frank free fully functions generally global half heart important improved improvement improving in vivo incompressible inconsistency instead instructions laptop lead linear magnitudes maintains manually martin minute near noise noiseless noisy often originate pair patients persist post potential practical practice procedure process processing propagation properties propose proposed pulmonary quadratic quality quantification quantifications reconstruct reconstructed reduced related representation resolution safely scanner section segmentation segmentations segmented separated separates several shrinkage significantly simplicity since slice slices soft softly solution song sparsity spirit spline strict studies suffers suggests tensor threshold thresholding throughout trunk utilize validate vector velocity visual visualization volume wavelet wavelets yielding zero