Meeting Banner
Abstract #3796

CIRcular Cartesian UnderSampling (CIRCUS): A Variable Density 3D Cartesian Undersampling Strategy for Compressed Sensing and Parallel Imaging

Jing Liu1, David A. Saloner1

1University of California San Francisco, San Francisco, CA, United States

Compressed sensing (CS) and parallel imaging (PI) have been exploited to reduce scan time by undersampling k-space data, which is highly desirable for 3D applications that usually involve unreasonably long scan times. This study proposes a novel method for generating undersampling patterns for 3D Cartesian acquisition, providing easy implementation, flexible sampling patterns, and high accuracy of image reconstruction with CS&PI.

Keywords

according accuracy achieve acquisition acquisitions adjusting applications applied appropriate better bottom brain certain circular circularly circus comparable composed compressed computational contain controlling corner cost degree density design desirable desired disk distribution dots easy edges efficient errors even examples experiment experimental exploited explored five flexibility flexible flexibly full fully generate generated generates generating giving golden highly human implementation impractical improve interleaved interleaving introducing like long materials matrix measured neck next normalized novel outperforms parallel pattern patterns performance perhaps phantom phantoms plotted position previously profile proposed radial random randomization randomized ranging real reconstruction reconstructions recover reduce reliable repeated representative researchers retrospectively root sampled samples sampling scanner selected selects sensing sequentially sets similarly simulation skipping solid space spiral spirit square squares starting starts strategy studies suited trajectories uniform unreasonably variable versus