Meeting Banner
Abstract #3797

Highly Accelerated 3D Dynamic Imaging with Variable Density Golden Angle Stack-Of-Stars Sampling

Zhitao Li1, Benjamin Paul Berman2, Maria I. Altbach3, Jean-Philippe Galons3, Diego R. Martin3, Bin Dong, Puneet Sharma3, Natarajan Raghunand3, Ali Bilgin1, 4

1Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; 2Applied Mathematics, University of Arizona, Tucson, AZ, United States; 3Medical Imaging, University of Arizona, Tucson, AZ, United States; 4Biomedical Engineering, University of Arizona, Tucson, AZ, United States

High spatial and temporal resolution in DCE are desirable. High temporal resolution is needed for accurate kinetic data analysis and high spatial resolution contributes to small structures identification. Radial DCE techniques have been combined with CS to accelerate DCE. Radial trajectories provide desirable attributes: Oversampling of the center k-space, incoherent artifacts from undersampled trajectories can be exploited in CS. Radial trajectories are also less sensitive to motion. A dynamic MRI technique using 3D stack-of-stars was proposed for free breathing 3D liver perfusion MRI. We propose a highly accelerated 3D dynamic MRI technique which uses 3D stack-of-stars with non-uniform kz sampling.

Keywords

abdominal ability accelerate accelerated accurate achieve acquisition acquisitions allows applications applied arrows artery artifacts attributes better biomedical breathing characteristics clinical combined computational computer conjugate consistently constraints dataset definition denotes density desirable distribution dong dynamic edge electrical engineering enhanced ensures expense exploited fidelity flexibility free frequencies golden gradient highly identify illustrated illustrates improvement incoherent incremented increments individually intensity introduced jean kidneys kinetic known lead length linear liver major makes many maria matches mathematics medical memory motion needed note often operator original oversampling performances perfusion period preserve previously prior problem properties propose proposed pulse quantitative radial radially recently reconstruct reconstructed reconstruction recorded recovered regardless registration regularization relatively renal representative requirements resolution resolutions respiration retrospectively rotated routinely samples sampling scanner scheme schemes sensing significantly simulate since slice solve solved space sparsity spatial spokes stack stars strategy strength structures temporal terms trajectories trajectory transform undesirable uniform uniformly variable variation vibe volumetric wavelet whenever window windowing