Meeting Banner
Abstract #3795

Improving Compressed Sensing Initialization and Convergence Using an Efficient Auto-Calibrating Parallel Imaging Method

Peng Lai1, Shreyas S. Vasanawala2, Michael Lustig3, Kang Wang4, Anja C.S Brau5

1MR Applications & Workflow , GE Healthcare, Menlo Park, CA, United States; 2Radiology, Stanford University, Stanford, CA, United States; 3Electrical Engineering & Computer Science, University of California, Berkeley, CA, United States; 4MR Applications & Workflow, GE Healthcare, Madison, WI, United States; 5MR Applications & Workflow, GE Healthcare, Garching, Munchen, Germany

Compressed sensing reconstruction requires many iterations to converge. This work developed an auto-calibrating parallel imaging method that can efficiently reconstruct coil-combined k-space data from random k-space sampling. Our preliminary results show that the proposed method can provide similar reconstruction accuracy with much faster computation compared to conventional auto-calibrating parallel imaging and can significantly improve the initial condition and convergence of compressed sensing reconstruction.

Keywords

accelerated acceleration accuracy accurate address among applications approaches auto brain calibrating calibration central channel channels clinical coil coils collected combine combined complexity compressed computation compute computer condition considerable convergence converges converted dataset datasets datum decouple decoupling density determined developed direct directly domain efficient eigenvector electrical engineering error evaluate evaluated exploit faster feasibility final finally find fitting full furthermore generate generation healthy highly hybrid improved improving increasing initial initialization intensive inversion investigated iteration iterations iterative knee linear materials matrix modified much multiplications necessitate needed neighbors next optimal original parallel park pattern patterns potential preliminary process processed processing promising proportion proposed proton pseudo radiology random reapplied reconstruct reconstruction reconstructions reduce reduced reduces require requires requiring resolution sampling scanners science sensing sensitivity significantly simulate slightly solution solutions solver source sources space sparsity speed spirit square step steps still subsequent successfully syntheses synthesis synthetic target thousand thread transform transformed typically undesirable uniform upper volunteers zero