Peng Lai1,
Shreyas S. Vasanawala2, Michael Lustig3, Kang Wang4,
Anja C.S Brau5
1MR
Applications & Workflow , GE Healthcare, Menlo Park, CA, United States; 2Radiology,
Stanford University, Stanford, CA, United States; 3Electrical Engineering
& Computer Science, University of California, Berkeley, CA, United
States; 4MR Applications & Workflow, GE Healthcare, Madison,
WI, United States; 5MR Applications & Workflow, GE Healthcare,
Garching, Munchen, Germany
Compressed sensing reconstruction requires many iterations to converge. This work developed an auto-calibrating parallel imaging method that can efficiently reconstruct coil-combined k-space data from random k-space sampling. Our preliminary results show that the proposed method can provide similar reconstruction accuracy with much faster computation compared to conventional auto-calibrating parallel imaging and can significantly improve the initial condition and convergence of compressed sensing reconstruction.