Meeting Banner
Abstract #2253

Noise Behavior of DCE-MRI Reconstructions Using Compressed Sensing Based Method

Yuqiong Ding1, 2, Yiu-Cho Chung1, 2, Leslie Ying3, Dong Liang1, 2

1Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China; 2Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China; 3Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States

As an emerging reconstruction technique, compressed sensing (CS) has demonstrated great potential to reconstruct high quality images from undersampled k-space data. However, the noise behavior of CS reconstruction in MRI remains largely unexplored. This work analyzes how noise is distributed and changed with increasing accelerations. We particularly focus on dynamic contrast-enhanced imaging (DCE-MRI), where the temporal and spatial noise behavior in CS-based DCE-MRI is characterized using the Marcenko-Pastur (MP)-Law method. The study provides a qualitative understand of the noise behavior in CS reconstructed DCE images. Such understanding can accelerate application of CS in clinical practice.

Keywords

academy accelerate acceleration additional additive advanced aforementioned agreement applicable application approved artifacts become behavior best biomedical bottom capability category changing characterized china circle clinical compressed computer consent consists constraint content contrast datasets deal dependent depends deviations ding distributed distribution domain dong dynamic dynamical electrical elliptical emerging engineering enhanced evaluate evaluated evaluation example exploiting fewer filtering fitting flash fluctuation focus frame frames frequency full fully future generated great health highly holds identified illustrate improvement indistinguishable informatics informed institutes intensity inverse iteratively knowledge known laboratory largely limits maps matrix moving noise nonlinearity normalization note objective observations organs partial particularly people pixel pixels please plots potential practice press prior propagating qualitative quality quantitative random randomly reason reconstruct reconstructed reconstructing reconstruction reconstructions reconstructs recruited reduction regularization remains republic resolution scale scanner science sciences sense sensing series space sparse spatial spatially subject subjects support technology temporal theory transform turbo understand understanding unexplored variance variant visible written