Meeting Banner
Abstract #2254

Increasing Sparsity in Compressed Sensing MRI by Exponent of Wavelet Coefficients

YUDONG ZHANG1, 2, BRADLEY PETERSON1, 2, ZHENGCHAO DONG1, 2

1Brain Imaging Lab, Columbia University, New York, NY, United States; 2New York State Psychiatric Inst., New York, NY, United States

Compressed sensing was introduced to the field of magnetic resonance imaging in recent years as a promising method to significantly reduce scan time. The performance of CS depends on the sparsity of the image in the sparse domain, such as wavelet transform domain. In this report, we proposed a method to increase the sparsity of CS MRI by taking exponent of wavelet transform normalized to the range [0 1]. The method was tested on a digital phantom and in vivo MRI data, and the results show that EXP-WT can improve the quality of the reconstructed image or significantly speed up the reconstruction.

Keywords

achieved acquisition advantage allows application axial background better blurred brain carried clinical coefficient coefficients compressed computation constrained controls conventionally core cost darker denotes density depends desirable developed digital domain domains dong empirical especially evaluate evaluation experiment exponent exponential fast faster fidelity field final formulated gives greatly house improve in vivo increasing indicates inst introduced iteration iterative length limitation limited mathematically matrix maximal measured much nearly noisy normalized normalizing operation operator optimization original pattern performance performances phantom practical problem processor programs promising proposed psychiatric qualities quality rapid reached recent reconstructed reconstruction recovered recovering recovery reduce remarkable report respectively scale scanner scheme sensing significantly software solving space sparse sparser sparsity speed square step steps taken taking terms texture trans transform transforms unlimited utilized variable view wavelet years zero