Meeting Banner
Abstract #2252

Optimizing Random Fourier Sampling Patterns for Compressed Sensing Using Point Spread Functions

David S. Smith1, Lori R. Arlinghaus1, Thomas E. Yankeelov1, E Brian Welch1

1Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States

We show that it is possible to optimize the random sampling pattern in compressed sensing MRI using a target-independent measure before data acquisition. Despite the nonlinear and random nature of the CS reconstruction and the spatially variant PSF, we show on a T1-weighted complex image of the breast that the variance of the PSF of the sampling pattern could be a reliable predictor of the ultimate reconstruction quality. The linear correlation of the variance of the pattern PSF with the normalized mean square error of the reconstructed image was 0.55.

Keywords

absolute accurate acquisition acquisitions adoption anatomical anatomy appears available barrier best blue breast channel chosen clearly clinical coefficient coil complex compressed compressively connection consistently convolution correlation correlations created despite dimension dimensionality domain energy error example except explored extend features finally forward frequencies frequency full fully function functions furthermore future graph ground highest highly idea improve improvement independent institute kurtosis lack larger largest libraries little lowest mammography many mask masks materials measure middle minimized missing modulation motivated nature noise nonlinear normalized optimizing pattern patterns peak performance possibly power predictability predictably predictor predictors produced produces prospective prototypical quality quantity random reconstructed reconstruction reconstructions related reliable replaced represent respectively response sampled sampling scanner science sensing serves sets shape simply slight smith spatial spatially spread square superior system theorem third training transfer transforming trend truth types ultimate unfortunately unknown variable variance variant various weaker width zeros