Meeting Banner
Abstract #3830

Iterative Auto-Calibrated Reconstruction of 3D Non-Cartesian Trajectories

Daniel Kopeinigg1, Murat Aksoy1, Samantha J. Holdsworth1, Rafael O'Halloran1, Roland Bammer1

1Center for Quantitative Neuroimaging, Department of Radiology, Stanford University, Stanford, CA, United States

An iterative POCS algorithm for reconstructing arbitrary 3D k-space data is introduced and applied to undersampled 3D Cones trajectories. Our results indicate that the algorithm can greatly reduce aliasing artifacts after only 3-5 iterations.

Keywords

acquisition added additional adjoint advanced aliasing allowing applied apply arbitrary artifacts authors auto barely beneficial calibrated calibration channel coil coils compatible compression computation compute computes cones consistency converge density dimensions discarded easily efficient either eliminating enforce enforcing especially every extends finally floret forthcoming foundation fully greatly gridded gurney head helpful hybrid ideal implementation improved incoherent interleave interleaves introduce inverse iteration iterations iterative john kernel like materials minor missing multiplication multiplied next ones operation original padded part patterns penalties portion predefined preparation previous problem produce produced promising proposed published quality quantitative radiology random randomly reading readout receive recently reconstructed reconstructing reconstruction reduced rely remain replaced residual rest restricted retrospectively sample sampled samples sampling simplified soft space spirals spirit stack step stops strategies subsequently subset sufficient supported suppress surrounding synthesize synthesized technology thank threshold took trajectories trajectory transform transformed traversing uniform unit unlike varying virtual visible volume wavelet yarns zero