Meeting Banner
Abstract #3829

How to Stack the Stars: A Variable Center-Dense K-Space Trajectory for 3D MRI

Benjamin Paul Berman1, Zhitao Li2, Maria I. Altbach3, Jean-Philippe Galons3, Diego R. Martin3, Bin Dong, Puneet Sharma3, Bobby T. Kalb3, Ali Bilgin, 24

1Applied Mathematics, University of Arizona, Tucson, AZ, United States; 2Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; 3Medical Imaging, University of Arizona, Tucson, AZ, United States; 4Biomedical Engineering, University of Arizona, Tucson, AZ, United States

There is constant demand for high quality images and short data acquisition times for MRI. Traditionally, a choice is made for one or the other, but due to the development of CS theory, it is often possible to have both. For 3D MR imaging, various trajectories are used to undersample in Fourier space including Cartesian, radial, and cylindrical. The cylindrical trajectory or stack-of-stars is used for dynamic and motion sensitive 3D imaging. For CS it is crucial that each measurement contain as much information as possible. We show that the 3D stack-of-stars trajectory benefits from a center-dense sampling scheme.

Keywords

acquisition adding addition additional amount applied arrow artifacts automatically backtracking benefits biomedical bobby breath breathing carcinoma choice clearly clinic computed computer consistent constant construct contain contains contrast criterion crucial cylindrical decreases demand denoted denotes dense density designed detect determined development directly distribution dong dynamic edges eighth electrical engineering enhanced even exploiting extension fixed fraction fractions free frequency geometry greater half hard highlighted holds identical illustrates improved increasing index iterative iteratively jean lack lead leads limited loss made maria martin mathematics measure measured measuring medical minimal motion much nearly necessary often optimization original preservation probabilistically problem pulse quality quantify radial rather reconstruct reconstruction reduction representation resolution respect retrospectively sampled sampling scanner scanning scheme schemes search sensing several short shorter significantly similarity since solution space sparse sparsity stack stars steps streaking structural sufficiently suggests traditionally trajectories trajectory transform uncorrelated uniform variable variation various vary venous version vibe view views visible visual wavelet wavelets