Meeting Banner
Abstract #3801

Region of Interest Compressive Sensing (ROICS)

Amaresha Sridhar Konar1, Steen Moeller2, Julianna Czum3, Barjor Gimi3, Sairam Geethanath1

1Biomedical Research Center, Dayananda Sagar Institutions, Bangalore, Karnataka, India; 2Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; 3Dept. of Radiology, Giesel School of Medicine at Dartmouth, Lebanon, NH, United States

Compressed sensing (CS) performance depends significantly on sparsity of the image data.The current work aims at providing additional sparsity regardless of the transform chosen to achieve increased acceleration than the conventional CS approach, usinga novel technique called Region of Interest Compressed Sensing (ROICS). ROICS allows for enhanced sparsity by decreasing the number of non-zero coefficients to be estimated by restricting the CS reconstruction to a ROI. This work demonstrates that ROICS outperforms CS at higher acceleration factors, quantified through reduced normalized root mean square error, as applied to cardiac MRI frames.

Keywords

acceleration accelerations achieve acquisition added addition affected aims allows analyses anatomy angiography applicability application applications better beyond biomedical called cardiac chosen coefficients columns combination complex compressed compressive computed consistency convex curve datasets decreasing defined depends depicting depicts dept derived described determined determines deviation diagonal domain drawn easily elsewhere equation equivalent error evaluated exact extended fewer field frame frames full functional future gain graph heart hence highly hypothesis identical implemented implies include inclusion incorporated increasing inform inhomogeneities institutions inverse involves justified limiting made magnitude mask matrix measured medicine metric might noise norm novel operator opposed optimization outline outperforms outside panel parallel particular performance permissible problem process product proposed prospective providing qualitatively quantified quantitatively radiology reconstructed reconstruction reconstructions reduction regardless regularization renal representative required retrospectively root rows samples school selected sensing severely significantly similarly solved space sparser sparsity spatial square structures subsequent superior tasks term theory trajectories transform transforms unconstrained utility white zero