Meeting Banner
Abstract #3800

Unifying Compressed-Sensing Reconstruction Framework for Multidimensional MRI: Combining Novel Dictionary Models with Frame-Based Sparsity and Flexible Undersampling Schemes

Suyash P. Awate1, Edward V.R. DiBella2

1Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States; 2Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, UT, United States

We propose a novel unified framework for compressed-sensing reconstruction of multidimensional magnetic resonance imaging (MRI) including dynamic MRI and high angular resolution diffusion imaging (HARDI). This brand-new framework incorporates a novel formulation for the compressed-sensing reconstruction problem which makes it very flexible with regards to (i) the kinds of imaging or undersampling strategies that can be exploited as well as (ii) the kinds of sparse models that need to be enforced on the data, allowing a variety of wavelet-frame models, total-variation models, and novel dictionary models.

Keywords

acquisition addition advanced allowing angular applications applied approaches around atom atoms best biomedical brain capturing cardiac chosen city clinical coefficients coherence combination combining complex component compressed comprises computing concise constant constraint constraints consuming contributions crossing curves define denotes desirable dictionaries dictionary diffusion dimension domain dynamic either element employ employed enable enforce enforcing example explicitly exploited exploiting extension faster fits fitting fixed flexible formulating frame frames framework free fully future gives gradient heart highly identity ignore improved incorporates intensities invariant investigating involves just kinds lake learning mathematical model modeling models motivating multidimensional multiplexed neural noise noisy novel operator optimization patch pattern patterns perfusion pixels positive principles problem propose proposed rank reconstructed reconstructing reconstruction regard regularity related representing resolution respectively rotated rotation salt sampled schemes scientific sensing similarly simulated space sparse sparsity spatial strategies strongly structure subsequent symposium synthesis temporal tight tiny tracts transform typically unified unifying validation variance variety wavelet wavelets zooming