Meeting Banner
Abstract #3788

A Retrospective, Fully Automated and Fast Method for Intensity Inhomogeneity Correction in 7T MRI

Sven Jaeschke1, 2, Robin Martin Heidemann2, Aleksandar Petrovic2

1HAW Hamburg, Hamburg, Germany; 2Healthcare Sector, Siemens AG, Erlangen, Germany

Ultra high field (UHF) MRI offers improved image contrast and higher SNR enabling isotropic, high-resolution in vivo anatomical imaging. However, image quality is affected by bias fields, which can be a hindrance for tissue segmentation or classification. In this study, we propose a novel, fast and fully automated image inhomogeneity correction method, which is well suited for UHF applications. In comparison to former methods, we employ a bounded Nelder-Mead simplex optimizer and use a joint intensity-gradient histogram to calculate entropy.

Keywords

additional affected anal anatomical applications approximated assess audience automated background basal better bias body bounded brain calculation classification clearly clinicians coefficients coil computer contrast convolution core corrected correction cubic dataset default denotes depiction determines direct dissertation employ enabling entropy especially example fast faster field fields flash former fully furthermore gradient gradients hamburg head histogram homogeneity implementation improves in vivo inhomogeneity initialization inputs intensity interpolate isotropic joint journal kernel knowledge matrix mead millimeter minimize model need needed normalization normalized novel offers operator optimized optimizer original part performance pipeline pixel posterior preliminary preprocessing priori process processing propose proposed qualitative quality receiver regularizes removal removing representative researchers resolution retrospective robin robust scanner sector segmentation sensitivities settings simplex slices spline steps suited superior table target terms thresholding tissue trans ultra uncorrected users volume volumes whole windowing