Meeting Banner
Abstract #2949

Generating a Human Neonatal Brain Atlas for Superior Normalization Accuracy

Yajing Zhang1, Linda Chang2, Thomas Ernst2, Jon Skranes3, Steven Buchthal2, Daniel Alicata2, Heather Johansen2, Antonette Hernandez2, Robyn Yamakawa2, Lillian Fujimoto4, Michael Miller1, Susumu Mori5, Kenichi Oishi5

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; 2University of Hawaii at Manoa, Honolulu, HI, United States; 3Department of Laboratory Medicine, Children's & Women's Health, Norwegian Univ. of Science and Technology, Trondheim, Norway; 4Straub Mililani Clinic, Mililani, HI, United States; 5Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States

MRI is a sensitive method for detecting subtle anatomical abnormalities in neonatal brains. The tissue composition of the neonatal brain is substantially different from that of the adult, and therefore, the use of a neonate-specific atlas might be more appropriate. To optimize the normalization, we introduce a method to create a Bayesian neonatal brain atlas to represent the studied population. Anatomical parcellation can be obtained automatically, avoiding the labor-intensive manual drawings of 3D ROIs. This tool is expected to be applicable for whole-brain detection of subtle developmental abnormalities, and for identifying MRI-based markers of neurological disorders in neonatal brain development.

Keywords

abnormalities according accuracy accurate achieve achieved adjusted aligned although among analyses anatomical appears application atlas atlases audience automated avoid better bigger biomedical blue bottom brain brains central children clear clinic clinical combined consistent contrasts core corpus create creation customized dashed deep definition delineated delineation detailed development developmental dimensional dimensions diseased drawing engineering especially estimation examined features frontal future general generated generating grant grants gray health heather human improved initial intensive introduce introduced johns labor laboratory larger lenticular lobe manual manually match matrix measured medicine miller neonatal neonate neonates nine normalization nucleus overlaid paper pediatricians performance performances peripheral population probably prohibitively psychiatry quantifying queen radiology registration related representation representative researchers resolution schizophrenia school science segmentation segmented semiautomated served shape showcased significance skull slice space stripped structural structure structures studied studies subjects substantially subtle suggested superior support target targeting technology template temporal thalamus tissue trace transformation univ upper users validated validation white women