Meeting Banner
Abstract #2628

Wavelet Based Multiscale Selection CS Reconstruction for Multi-Contrast MR Images

Sehoon Lim1, Dosik Hwang2

1SRI International Sarnoff, Princeton, NJ, United States; 2School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

A set of different contrast MR images are usually necessary for proper diagnosis. However, the multiple acquisitions of several contrast images require long scanning time. In this study, we propose an efficient multimode compressed sensing (CS) framework to reduce the total scanning time by undersampling the k-space data of each contrast (mode) image and reconstructing artifact-minimized images. In contrast to other groups, we used a wavelet based multiscale selection CS technique to alleviate computational burden. In our studies, the running time of the proposed wavelet multimode CS is presented as a minute, which is promising for agile and compact applications.

Keywords

acquisitions adjusting agile aliasing alleviate applications applied artifact artifacts back band basic better caused certain code coefficients collect common compact computation computational computed considered constrains contrast corrupted decompositions denote density design designed determined diagnosis distinct done education effectively electrical electronic encourage engineering enhance enhanced estimation examples fast feasibility features form former forward foundation framework frequencies fully funded improves improving index indicates individual individually international inverse invokes keeps latter least long mathematical matrix minimizes ministry minute modal modalities mode model modes national note numerical optics original performance pixel plugged preserve problem problems processed program projects promising proper propose proposed pulse quality randomly reconstructing reconstruction reconstructions reduce reduced regularization relatively repetition require residues respectively routinely running sampled samples sampling scale scanning school science selected selection sensing several severely short since solutions solves space square still studied studies subject superscripts supported suppress suppressed suppresses system technically technology term tomography transform transforms type variable wavelet