Meeting Banner
Abstract #2627

Sparsity-Enforced Kalman Filter Technique for Dynamic Cardiac Imaging

MingJian Hong1, Feng Liu2, XiaoHong Zhang1, YongXin Ge1

1School of Software Engineering, ChongQing University, ChongQing, China; 2School of Information Technology & Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia

In this work, a sparsity-enforced Kalman filter technique for dynamic cardiac imaging is presented. The Kalman filter is firstly casted into a framework of optimization, and then a sparsity constraint is incorporated to the framework for better motion capture of the imaging object. Applications to cardiac dynamic MRI clearly demonstrated the strength of the proposed method.

Keywords

able achieved added additional algebra amount appear applying arrows assuming better black capture cardiac casted casual china chosen cine column combination conducted constrained constraint constraints corrected covariance deformation degree denser density depend depends described deviation diagonal discrete dynamic earlier electrical eliminate encoding enforced engineering enhance error estimation evaluated even failed filter filtering find firstly format frame frames framework free full furthermore future gives hong illustrates impose improved improvement incorporating indicates indicted inspected invariant inverse iteration iteratively limitations linear mark marked matrix minimization model moments motion noise noises normalized object obvious optimization outperforms partial partially pattern performance position precession previous prior problem proposed random randomness rapid readout real reasonable recently reconstruct reconstructed reconstruction recursive reducing representative resolution respectively rest sampled sampling samplings school seek several sharp simulation simulations since software solution space sparse sparsity spatial steady strategies strength system technology temporal theory trans transform updated usually variable variation vector vectors white yields