Meeting Banner
Abstract #2215

Fast NSR: An Optimized Non-Linear Stochastic Deconvolution for Large Data Sets and Clinical Analyses

Denis Peruzzo1, Danilo Benozzo1, Gianluigi Pillonetto1, Alessandra Bertoldo1

1Department of Information Engineering, University of Padova, Padova, PD, Italy

We present fast NSR, an optimization of the original Non-linear Stochastic Regularization algorithm to quantify the residue function and the CBF in DSC-MRI. Fast NSR introduces a preliminary step that allows to overcome the limits in the original NSR implementation, such as the sensitivity to the starting points and the required computational time. In the preliminary step the optimal starting points and the stochastic component of the residue function are computed for each voxel. Fast NSR elaborates a whole subject in a couple of hours and is now suitable for the analysis of large data sets and in clinical context.

Keywords

accurate acquisition allow allows amount analyses analyze analyzed applicability applicable arterial artery audience automatic basis best blood carotid cerebral clinical clinicians cluster comp comparable component computational computed computer concentration condition constraints consuming contexts contrast convolution core correctly curve days deconvolution deficit derived describe described describing deterministic dispersed dispersion divide drop dual dynamic easier engineering example exponential extracted fast features finally firstly fixes flow fourthly function functions hand hemisphere highlight hours hyper identifies implementation implementations input internal introduces kinetic kinetics likelihood linear maps modeling models motion must optimal optimization optimized original overcomes parametric pathologic peak performances perfusion personal physiological preprocessing problems processed programs protocol quantified raise recirculation reduce reducing regularization reliable reports required residue scanner scientists secondly selected sensitive sets severe slopes smoother starting step stochastic strategy strongly subject subjects subsets summarizes summary susceptibility table target thirdly trans unilateral volume volumes