Meeting Banner
Abstract #2205

PCA of Combined DCE-MRI Data from a Large Cohort Can Be Used to Assess Treatment Effects with Similar Sensitivity to Pharmacokinetic Model Fitting

Matt Nathan Gwilliam1, David John Collins1, Martin O. Leach1, Helen Young2, Matthew R. Orton1

1CRUK and EPSRC Imaging Centre, Institute of Cancer Research, Sutton, London, United Kingdom; 2Astrazeneca, Macclesfield, Cheshire, United Kingdom

DCE-MRI is widely used in clinical trials of antiangiogenic and vascular disrupting agents in the assessment of treatment response. Fitting pharmacokinetic models gives well defined measures of vascular function, but difficulties in obtaining a patient-specific AIF can cause additional errors on PK metrics. This abstract demonstrates that a model-free PCA approach is as sensitive to DCE-MRI treatment changes as model-based PK measures in a group of patients receiving a VEGF inhibitor.

Keywords

abdominal accurate acquisition additional align although applied arterial assess assessed assessment association attractive beyond biomedical breath cancer cause choice classifies clinical cohort combined comparing component compute conducting consisting converted correlation correlations covariance cropped curve curves cycle define described detect difficulties dimensionality disease disrupting distance entirely errors ethical extended extension fitted fitting free frequency function funding gadolinium give gives goal grant health hold hypothesis identify improved included includes individual individually insignificant inspection interpolated interval justified kingdom lacks larger leach lesion manually materials measures median metastatic metric metrics model modeling models multivariate must onset onwards patient patients phys physiologies population post potential preparation previous principal processed protocol quantitative radiology rank received reduced repeat repeatability require response restricted retain sampling score scores sensitivity signed significance significantly simplest smaller spaces specificity statistically subset suitable summary support table terms together treatment trial twice underlying univariate unlike uptake variance variation variations vascular vector visual volumes yield young