Meeting Banner
Abstract #2080

Noise Estimation for Averaged DW MR Images

Nikolaos Dikaios1, Valentin Hamy2, Shonit Punwani2, David Atkinson2

1Centre for Medical Imaging, University College London , London, Greater London, United Kingdom; 2Centre for Medical Imaging, University College London, London, Greater London, United Kingdom

The scope of this project was to estimate the noise using an adaptation of the median-absolute-deviation (MAD) in the wavelet domain for the expected noise distribution, and calculate the diffusion coefficient (ADC) with a non linear regression (NR) algorithm that accounts for underlying noise.

Keywords

absence absolute accordance accounting accounts accurately acquisition adaptation adapted aligned another applied approximated approximation aver averaging avoid axial benign bias briefly calculation carcinoma cell clinical closed coefficient coefficients coil coils college combined conclude confluent consequently consisting constants convolution convolved correction corresponds coupe decomposed decomposition density depend depending derived deviation diffusion discrimination distributed distribution domain employed equation estimation estimator expectation expected fits fitted fitting form formula frequencies function funded generated grants greater head hence histogram induced inherently iterative kingdom lead linear lowest lymph magnitude mainly malignant maximization measure measured median medical metastatic modulus neck nodes noise object optimize otherwise parallel partially patients populations predicted probability project proposed pulses real receiver reconstruction reduced regression repeated respectively rice scanner scope segment segmented selected separately simulated sixteen slice slices spin squamous subject subjects suggested summary table taken theory thick tissue trace underlying update vales wavelet whether