Meeting Banner
Abstract #2079

A Simple Retrospective Noise Correction for Diffusional Kurtosis Imaging

Russell Glenn1, Ali Tabesh1, Jens H. Jensen1

1Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, United States

Diffusion MRI (dMRI) measurements are positively biased by noise from use of magnitude reconstructed images. The effects of the noise bias increase with decreasing signal-to-noise ratio (SNR), which can be problematic in high resolution dMRI acquisitions. A simple, retrospective noise correction technique is described and a weighted linear least squares fitting algorithm is presented for diffusional kurtosis imaging (DKI). Noisy phantom data is analyzed in DKI datasets with variable SNR, and the results of the noise correction are compared to uncorrected and reference data. Noise correction substantially reduces the bias in kurtosis estimates.

Keywords

accelerated acquisition acquisitions adapted alter analytically analyzed anatomical applicable application applied arithmetic assumed audience averaging background bandwidth bars bias central coil complex composite confidence consistency convenient corrected correction cost cream dairy dataset datasets decreasing defined described differed diffusion diffusional distribution drawn employed error estimation even evident exact expected experiment extraction fellowship field function funding gradient grant ground head highest imaginary improved increasing independent inherently intersection interval investigates isotropic knowledge known kurtosis leads least linear longer magnitude majority matrix measured medical minimized minimizing modified noise noisy obey occur often original parallel partial particularly phantom phys poor positive previously project protocol radiological radiology rather real receive reconstruction reduce reduces relevant removing represent resolution respectively sample scanned scheme sciences short simple slice smith solutions south spatially squares step still straightforward substantially supported suppression system target tensor terms thicknesses training translational transmit true truth turned typically unbiased uncorrected uniform useful validated varying vector view water