Meeting Banner
Abstract #2054

Phase Sensitive Reconstruction in Diffusion Spectrum Imaging Enabling Velocity Encoding and Unbiased Noise Distribution

Jonathan I. Sperl1, Ek T. Tan2, Tim Sprenger1, 3, Vladimir Golkov1, 3, Kevin F. King4, Christopher J. Hardy2, Luca Marinelli2, Marion I. Menzel1

1GE Global Research, Garching, Germany; 2GE Global Research, Niskayuna, NY, United States; 3Technical University Munich, Garching, Germany; 4GE Healthcare, Waukesha, WI, United States

Standard diffusion MRI data processing is based on the magnitude of the data, while the phase is neglected. However, valuable information about coherent motion like flow or pulsatility is encoded in the phase. Moreover, by separating the phase information from the data, subsequent processing like tensor fitting or fiber tracking can be done based on the real part of the data avoiding the bias introduced by the Rician noise distribution of the magnitude data. This work presents a robust workflow for a phase sensitive reconstruction of DSI data allowing for the extraction of velocity components and bias-free diffusion information.

Keywords

accelerated acquisition advanced allowing allows avoiding bias brain called character characterize chosen clinical clinically close coherent coil combined complex components computing contains coordinate correcting crossing cube dependent depicts derived diffusion dimensions directional distribution done eddy enables enabling encoding essentially estimation evaluated example except extraction fairly fiber field fitted fitting five flattened flow fractional free fully global guided hand head healthy hence highest independently inhomogeneities interval intrinsic introduced inverse investigated john king kurtosis latter least like linear linearly magnitude maps meaningless metrics moreover motion neglected nicely noise output parallel part particular path pixel polynomial principle procedures processing profiles proof proposed quantified real reasonable reconstruction related remaining remove removed resolving rows scanner schemes sense sensing sensitive separated separating slice slowly sons space spatial spectrum squares step steps strength subsequent subtraction successfully technical tensor tensors theoretically tracking tracts transform unbiased unwrapping valuable variations various varying velocity ventricles volunteer whereas wrapping wraps yield yielded yielding