Meeting Banner
Abstract #0604

Accelerating Encoded Simultaneous Multi Slice MRI with Compressed Sensing

Sagar Mandava1, Jean-Philippe Galons2, Ali Bilgin1, 3

1Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; 2Medical Imaging, University of Arizona, Tucson, AZ, United States; 3Biomedical Engineering, University of Arizona, Tucson, AZ, United States

Simultaneous Multislice Acquisition (SIMA) by Hadamard-encoded excitation has been proposed as an alternative to 3D volume imaging (3DFT) when acquiring fewer than 64 slices to avoid ringing and leakage artifacts. As slices are excited simultaneously, SIMA enjoys SNR benefits over slice-by-slice imaging similar to 3DFT. In this work, we investigate the use of compressive sampling strategies within the SIMA framework. In addition to Hadamard and complex Hadamard encoding, we introduce the use of Noiselet encoding in SIMA.

Keywords

accelerated accelerating according achieved acquisition added adding addition allows applications appropriately arbitrary artifacts attributed avoid bandwidth basis benefits biomedical chosen coefficients combination combinations combined comparing complex compressive computer conjugate constant convex counterparts create created denotes density distribution duration dynamic electrical element encode encoded encoding encodings engineering enjoys excitation excitations excite excited expected exponential expressed family features fewer flash formalism framework frequency fully functions generated gradient hybrid importantly improved incoherence incoherent individually inherent introduce investigated known leakage limits linear maps masks matrices matrix maximally measured medical modulated modulation need noise nonlinear offsets operator optimization optimized phantom previously problem proposed pulse pulses purely randomly reconstruction reconstructions recovery representing represents requires resolution retrospectively ringing sample sampling scanner scheme sensing sequential sets several simulate simulations simultaneous simultaneously since slice slices solved space sparsity specified stack steps strategies suggested summing table temporal term terms theory together transform truncated unconstrained variable visual volume wavelet white written zero