Meeting Banner
Abstract #0603

A Unified Tensor Regression Framework for Calibrationless Dynamic, Multi-Channel MRI Reconstruction

Joshua D. Trzasko1, Armando Manduca1

1Mayo Clinic, Rochester, MN, United States

Previously, low-rank matrix regression methods have been used to enable "calibrationless" parallel and "training-free" dynamic MRI reconstruction. In this work, we present a novel low n-rank tensor regression framework for calibrationless reconstruction of dynamic and multi-channel MRI data, and demonstrate that previously image-domain strategies arise as instances of this unifying model.

Keywords

acquisition acts aliasing alternating amongst anatomical arrow artifact audience auxiliary axis benefits blast block blocks blurring body bulk cardiac channel cine clear clinic coil coils computation consider constraint core correspondingly define defined degree density described developers dimension dimensions disjoint domain dual dynamic effectively efficiency efficiently encoded error exact exam example executed exhibits expected explicit extends extracts features finally fine formulated foundation framework free freedom full functional functionals generalization generalizes highly improved improves incorporating inter iteration know knowledge machine manually marked matrices matrix mayo memory minimization mirror model morphological morphology multipliers natural necessitates noise norm nuclear objectives offer operator parallel penalty physiological presumed previously prob problem prolonged promotes propagation quantity rank receiver reconstruction recovers recovery regression regularization require required requires residual sampling sensitivity series short sliding solved space sparse sparsity spatial spectral standalone strategies suppresses system target temporal tensor tensors training transform tuned typically unified unifies uniformly unifying variable whose window yields