Meeting Banner
Abstract #0036

Finite Number of Brain Network Configurations Revealed from Time-Varying Connectivity Assessment of Resting State fMRI

Hao Jia1, Xiaoping P. Hu2, Gopikrishna Deshpande1, 3

1AU MRI research center, ECE dept., Auburn University, Auburn, AL, United States; 2Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology & Emory Univeristy, Atlanta, GA, United States; 3Dept. of Psychology, Auburn University, Auburn, AL, United States

We assume connectivity dynamics derived from fMRI have finite, quasi-stable configurations based on previous EEG/fMRI evidence. We tested this using a unified framework involving dynamic estimation of whole brain functional connectivity (FC) and effective connectivity (EC), evolutionary clustering and segmentation into finite number of patterns. Sliding window method was used to determine FC and dynamic granger method was used for EC. Result evidenced above hypothesis and there are 2-3 dominant modes for both FC and EC. Main FC modes feature default mode network, visual, sub-cortical and motor networks, while sensory regions to frontal cortex interaction is revealed by EC modes.

Keywords

adaptive adopted affect agreement annual applied around attributed auburn averaging axis band biomedical bottom brain calculating causal causalities causality centroid centroids clinical cluster clustering clusters colors configurations conn connectivity converge converged correlation correspond cortical coupling covering criterion default dept derived determined deviation distance distribution dominant duration dynamic dynamically dynamics electrical employed engineering equals estimation even every evolutionary experiment experimental fast feedback finite fitting fractal framework frontal functional functionally functions guaranteed hierarchical histogram hypothesis included indicating infinity instant interactions involved length listed maximal measure meeting mode modes motor much network networks next noteworthy null outcome outputs parietal partition pass patterns plus possess previous previously properties quasi receive recurred relevance repeatedly reported represent respectively resting revealed scale scanner segmentation series serve shaped since sliding slow spent stable stage static step studies subject subjects subsequent subsequently summary table temporal thresholds throughout topographies traditional transform transition underlie unified updated varying ventral ville whole windowed yuan