Meeting Banner
Abstract #0035

Multiple Time Scale Complexity Analysis of Resting State Fluctuations

Robert Smith1

1Neurology, UCLA, Los Angeles, CA, United States

The present study explores multi-scale entropy (MSE) analysis to investigate the entropy of resting state fMRI signals across multiple time scales. MSE analysis distinguishes random noise from complex signals since the entropy of the former decreases with larger time scales while the latter signal maintains its entropy due to self-similarity" across time scales. The results show enhanced contrast in entropy between gray and white matter, as well as between age groups using MSE analysis.

Keywords

ability additional affect aged amount apparent approximate attempts audience bars became becomes behavior best brain calculating capacities chaotic chosen coarse coil complex complexity conditional conditions confounds consecutive constant continue contrast correction correlated corresponds create crucial decrease describe developed deviation discern diseases disorders displays distance distributed dominated dynamics elderly employs enhanced entropy error evolution exhibit exhibiting exhibits experimental exploit falling features field filtering fluctuations fractal frequencies frequency function gradient graining gray head healthy heart indicative inject investigate investigates knowledge known larger length limitations long longer lowest made many marked match measures middle motion much neurological neurology noise norm original patterns pink plotted power preprocessed probability procedure process promising random recently registration regularity repeated resting sample scale scales scaling scientists selected self series severities sharper short shorter slices smith smoothing spatial spectrum structural subject subjects system systems target theory threshold trio uncertainty uncorrelated understanding variety various volunteer volunteers ways whereas white years young