Meeting Banner
Abstract #4225

A Novel Compressed Sensing Approach to Accelerated Quantitative MRI Using Model-Driven Adaptive Sparsifying Transforms

Julia V. Velikina1, Alexey A. Samsonov2

1Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; 2Radiology, University of Wisconsin - Madison

We propose a novel model-driven compressed sensing approach for T1 relaxometry. The proposed algorithm alternates signal estimation with adaptive update of sparsifying transform based both on the analytical signal model and current signal estimate. The proposed algorithm can also be used in other quantitative MRI applications.

Keywords

absence accelerated acceleration accuracy accurately achievable acknowledge acknowledgments acquisition adaptive adjust aliasing allow although analytical anatomy applications apply approaches approximation artifacts available behavior block brain clinical coil collected combined complicated compressed conjugate constant control dependence dependencies described design dimension driven enhances equation error errors estimation example exploited fact financial fitting fold free fully functions generality glean good healthy help improves increments individual inexpensive initially interleaves intuitively inversion iterations iterative limiting linear locker look loss mapping maps matrix measured minutes model models near nearly noise normalized novel numerical operator outline parametric perfect phantom physics piecewise practice prescribed prior problem propagate properties propose proposed pulse quantitative random realistic receivers reconstructed reconstruction recovery regularization regularized rely representation residual respectively retrospectively root sampling scanner sense sensing series settings several simulated since solution space sparsity spin square step superior suppose system theoretical theory transform transforms typically uniformly update updates user utilize variable vector white yield zero