Meeting Banner
Abstract #4224

Comparison of Wavelet Subband Decomposition Methods for High-Frequency Subband CS

Kyunghyun Sung1, Anderson N. Nnewihe1, 2, Bruce L. Daniel1, Brian A. Hargreaves1

1Radiology, Stanford University, Stanford, CA, United States; 2Bioengineering, Stanford University, Stanford, CA, United States

Compressed sensing (CS) is a technique that allows accurate reconstruction of images from a reduced set of acquired data. Here, we describe two wavelet subband decomposition methods for High-frequency Subband CS, which enable to employ selective application of different undersampling patterns and reconstructions in different k-space regions. Two wavelet decomposition methods are evaluated in high-resolution T1- and T2-weighted 3D breast imaging with extremely high acceleration factors.

Keywords

acceleration acquisitions aliasing allow allows application applied apply approx arrows artifacts assess ates better breast causing coil combination compatible completely complicated consistent constructed custom decomposition demodulated density dependent developed dimensions direct discrete disk domain efficiently eliminate employed enabling evaluate example exist exploit exploiting fact filters fine fitted formalizes forms frequencies frequency full fully good hods limited link local localized location lowest maintained matrix note operation outer pace parallel pattern patterns position problems providing quadruplet quality rand random reconstruction reduce removed replicated require residual retrospectively root sampled samples sampling select selected sensing separate separately sets simple slightly solving space spatial spirit squared squares still structures subjects sung system transform transforms tree type wavelet wavelets ways weigh