Meeting Banner
Abstract #3631

Optimal Diffusion Kurtosis Imaging for Clinical Use Fewer Diffusion Weightings or Diffusion Directions?

Jiachen Zhuo1, Jonathan Z. Simon2, Rao P. Gullapalli1

1Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; 2Electrical & Computer Engineering, Biology, University of Maryland College Park, College Park, MD, United States

Diffusion kurtosis imaging (DKI) has gained much interest lately as a tool that can reveal subtle tissue microstructure changes over and beyond available from diffusion tensor imaging (DTI). The main challenge for clinical applications of DKI is the long imaging acquisition time due to the increased measurements needed to fit a more complex model (21 model parameters). Here we study the effect of diffusion weightings and diffusion directions in estimated DKI parameters to determine the optimal DKI imaging schemes within a clinically feasible image acquisition time (< 10min), and to understand the estimation variability in using these optimal DKI schemes.

Keywords

accuracy achieved acquisition anatomy application assess assessed axial basal beyond bias biology black boxes brain capsule challenge chance circled clinical clinically coefficient collected college combinations commonly computer conditions considered constrain constrained constraint construct contribute corpus counted dataset datasets depend determined diagnostic diffusion distance distribution eight electrical engineering erroneous estimation faces fewer finding fitting five full gained ganglia goal going gold healthy highest improvement indicated integration inter internal isotropic known kurtosis lately least linear little long lowest many maps mask maximally measures median medicine minutes model much needed negative noisiest nuclear optimal orig parallel park parsed particular percentile performance plotted preprocessed quantile radiology reconstruction reduce reduced reduction referred regarding regional reliable repeated repetitions required resolution reveal sampling scheme schemes school selected served shorter significantly similarly since smoothest smoothing spatial sphere squares subsets suggested susceptibility take tensor tissue trio typical underlying understand unit variability variation various violations volumes volunteer weightings white whole zero