Meeting Banner
Abstract #3578

Outlier Detection Based on the Neural Network for Tensor Estimation

Zhenyu Zhou1, 2, Yijun Liu3, Guang Cao1, Karen M. von Deneen3, Dongrong Xu2

1Global Applied Science Laboratory, GE Healthcare, Beijing, China; 2MRI Unit, Columbia University, New York, NY, United States; 3McKnight Brain Institute, University of Florida, Gainesville, FL, United States

Diffusion weighted imaging is always influenced by both thermal noise and spatially and/or temporally varying artifacts such as subject motion and cardiac pulsation. Motion artifacts are particularly prevalent, especially when scanning an uncooperative population with several disorders. In this study, we proposed a classifier work frame which can classify DWIs as normal images or motion artifacts. It achieves better performance in tensor estimation by automatic unvoxel-wise outlier rejection compared with manual and visual inspection, and previous voxel-wise outlier rejection methods. The proposed method could potentially remove the influence of unexpected motion artifacts in DWI acquisitions.

Keywords

ability achieve acquisition acquisitions adult always applicable applied approaches artifacts assigned automated axial better brain capable chaotic china chose chosen classes classification classifier collected collinear color column component conducting confusion construct contribution corrected cover cross currently damaged dataset denotes detailed detection determined diffusion diluted direct disorders effectively employed entire equipped estimation experimental extract extraction false feature features find fitting flowchart fold forward frame global gradient gradients head impact important improve influence influenced initial innovative inspection institute integration interpretation laboratory manual many material matrix methodology motion negative network networks neural noise optimal optimization optimized output paper part particle particularly pattern people performance position potentially powerful prevalent principal probabilities procedure proposed psychiatry pulsation reasonably reduce registration rejection remove resolution sampling scanner scanning series several since slice spatial spatially stages strength subject subjects swarm system table target temporally tends tensor texture thermal tool transform unavoidable uncooperative unexpected unit upon validation walker wavelet widely wise