Meeting Banner
Abstract #3577

A Robust and Automated Method for Estimating the Expected Signal Standard Deviation in DWI Datasets

Lin-Ching Chang1, Carlo Pierpaoli2

1Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, United States; 2National Institutes of Health, Bethesda, MD, United States

Correctly estimating the expected signal standard deviation (SD) due to thermal noise in diffusion weighted images (DWIs) is important for controlling image quality, correctly computing the chi-squares value, image registration and outlier detection. For single channel acquisitions, signal SD could be estimated from a ghost-free region of the image background. However, the signal in the background of DWIs acquired on modern clinical scanners cannot be used for this purpose. This paper proposes an object-based method taking advantage of robust regression and residual analysis to estimate signal SD. Results from simulation indicate that the proposed method performs very well even in the presence of DWI volumes which are completely corrupted.

Keywords

absolute acceptable acquiring acquisitions added additional address advantage although applied arises artifacts automated background basis better book brain catholic certain channel classical clinical collection company completely compute computed computer consuming correctly corrupted corruption created dataset datasets defined denote derived described deviation diffusion distributed distribution done effectiveness electrical eliminating engineering error estimating estimation estimator even examples expected extract extracting filtering fitting formula free fully ghost hardware health human identical important improves institutes intensity location measured measuring median medical meeting minus modalities modern multiplied multiplying national needed noise object original outliers outperformed parallel percentage performance physics practical presence problem processing propose proposed quadrature quantitative ranging rarely reconstruction reduced reflects regardless registration regression remove removes replicated replicates reproducibility required residual residuals respectively robust sample scalar scheme severity similarly simulate simulated simulations situation slightly solve specifies squares step still synthetic system tail takes tasks tensor thermal true types underestimated underestimation user validate volume volumes walker