Meeting Banner
Abstract #3557

Diffusion Tensor Uncertainty: Visualization and Similarity Metrics

Mustafa Okan Irfanoglu1, 2, Michael Curry1, Evren zarslan1, 2, Cheng Guan Koay1, Sinisa Pajevic1, Peter J. Basser1

1NIH, NICHD, Bethesda, MD, United States; 2Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States

The uncertainty inherent in the estimated diffusion tensors can have profound effects on the analysis outcomes. In this word, we propose a novel method to visualize DTI uncertainty along with similarity metrics that incorporate this information. These metrics can be employed in a variety of applications including tensor field image registration or tensor image segmentation.

Keywords

able according addition additionally adjacent among analyses analytical anisotropic anisotropy apply approaches axial become capture captures channel clustering coil complex complicated computed consisted constructed containing content context corpus corrected covariance covariances creation datasets dense describe described design develop diffusion direct directional directionality discriminant distance distances distant distributed distributions divergence divergences eigenvector elements ellipsoid employ enable error even excite expect experimental extensions fail familiar features field finally form function functions gradients gray health healthy highest hots hypothesis incorporates inherent instead interestingly interfaces isotropic least like lobular lying matrix measure measures metric metrics motion multivariate noise normally novel onto operator optimum orientation originating particularly principles proposed quality regenerative registration reliability sampling scalar scheme schemes segmentation shape shapes similarity slice solution sparser sphere spherical squared statistical still studies subject subtle suitable symmetric table takes tend tensor tensors term tissue towards trace types uncertainty underlying uniformed unit various ventricles version visualization visualize visualized whereas white