Meeting Banner
Abstract #3536

Nucleus Size Determination in Q-Space Analysis of Three-Dimensional Cells

Gregory S. Duane1, Yanwei W. Wang, Blake R. Walters, Jae K. Kim

1Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada

The impulse-propagator (matrix) method is extended to a three-dimensional idealized cell geometry describing nucleus, cytoplasm, and extracellular fluid. A basis is constructed, appropriate for the boundary conditions specified on spheres, consisting of spherical Bessel functions of radius multiplied by spherical harmonics in the angular variables. For a PGSE sequence, clear diffraction patterns are obtained for both nucleus and cytoplasm, with cytoplasm dominating the total signal. Results compare favorably with Monte Carlo simulation results. With OGSE, the nuclear diffraction pattern dominates. In either case, vestiges of the diffraction pattern in the total signal could potentially be used to assess nucleus size.

Keywords

able absent achieve achieved allows applied appropriate approximated approximation arising array assess assumed assumptions basis blur boundary cancer cell cells chosen collection combination comparable compartment compartments computation conditions consider constants containing contrast cycle cycles cytoplasm dashed decreases degraded delta derived development diffraction diffusion dimension dimensional directly displayed earliest eigenfunctions elements emphasize especially expected expensive extend extent extracellular fast fitted flow fluid form formalism free functions geometries geometry give gives giving idealized identical impermeability impermeable impulse impulses indicator individual institute integration interference internal irregularity kind matrices matrix membrane membranes microscopy model models modes needed neighboring normalized nuclear nuclei nucleus numerical operator oxford pattern patterns permeability permeable placement press previous principles probing propagator pulse random realistic reduced regard regional rely remain representation representing required resolution restricted satisfy scale scales scenario series shorter simulation simulations situations space spaces spatial spheres spherical square stages steadily step streamlined strong suggestion suggests support thunder transform vectors worst