Meeting Banner
Abstract #3494

Optimal Kinetic PASL Design and CBF Estimation with Low SNR and Rician Noise

Li Zhao1, Craig Meyer1, 2

1Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; 2Radiology, University of Virginia, Charlottesville, VA, United States

By designing optimal observation times (TI) in dynamic PASL, we can achieve more accurate estimation of CBF. Here, we compare optimal designs for the high/low SNR case, White Gaussian/Rician noise model, and the results from L1/L2 norm estimation. The results show a) optimal sampling design gives accurate estimation, b) low SNR, Rician noise could result biased estimation.

Keywords

accuracy accurate accurately achieve achieved actually added additive approximate approximated approximately arrival assumed assumption averaging axis better bias biased bigger biomedical blood bolus bound brain care choosing classic coefficient compartment conditions count cram delay denominator design designing developed deviation duration efficiency efficient engineering enough equates estimation estimator estimators evaluate experiment fisher foundation funded furthermore generate gives good important improved initial kinetic labeling least likelihood linear linearly longer magnitude matrix maximize medical minimize model modeled models needs noise noisy norm norms observation optimal optimizing part partition patients performance perfusion radiology rapid reduce regardless repeated significantly simulations solutions spaced square statistical stroke subject table theory tissue transit true tumor unbiased unknown variance white yield yields