Meeting Banner
Abstract #3395

Improving Lesion Classification Using an Empirical Knowledge of False Classifications in Multiple Sclerosis

Sushmita Datta1, Xiaojun Sun1, Ponnada A. Narayana1

1Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX, United States

Automated classification of lesions in multiple sclerosis (MS) is often hindered by the presence of false classifications (FCs). These FCs occur due to presence of some regions mimicking lesions. We have developed and implemented a false classification probability (FCP) map for improved lesion classification using the knowledge of false classifications obtained from automated segmented and validated lesion classifications. The application of FCP map significantly improved the lesion classification in 57 MS subjects as assessed by the Dice similarity indices.

Keywords

accuracy accurate acknowledgment acquisition aligned aligning anatomical appear application applied arrow atlases attenuated automated axial body brain cerebellar cerebellum chart class classification classifications classified classifier cohort combined connectivity consistent consists cortical created custom deep deformation deformed delineated developed diagnostic diagram dice dual eliminate empirical equal expert exploited exploiting extent extract extraction false fields fifty filtration finally flair flow fluid fuzzy generally generated gradient gray greater health hence histogram improve improved improvements improving intensity inverse isolated isotropic knowledge known labeling lesion lesions linear load located mask masking mimic minimize minimized minimizing necessary noise optimal paired parametric part prepared presence prevalent probabilities processed proposed quasar rapid realized recovery reformatted registration remaining removed representing respectively rest retrospectively rigid saturation scanner schematic scheme sclerosis segmentation segmented separately seven significantly similarity since software space structures subject subjects subsequently subtracting supported suppressing symmetric system tailed taking template threshold thresholds tissues tracking uniformity utilized validated validation volumetric whole