Meeting Banner
Abstract #3351

Self-Consistent GRAPPA Reconstruction with Close-Form Solution

Yu Ding1, Hui Xue2, Ti-chiun Chang3, Christoph Guetter3, Orlando Simonetti1

1Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; 2siemens corporate research; 3Siemens Corporate Research

Several new algorithms have been proposed to take advantage of k-space correlations, such as SPIRiT and PRUNO. However, these methods have no closed-form solutions, and can only be solved using computationally-intensive iterative methods. We propose a new k-space based pMRI technique, self-consistent GRAPPA by including an extra set of linear equations utilizing the intrinsic correlation between skipped k-space points. SC-GRAPPA combines the linear equations of traditional GRAPPA with these additional equations to solve for the missing k-space data. SC-GRAPPA utilizes a least-square solution of the linear equations, and therefore has a closed-form solution without any free parameters.

Keywords

acceleration additional adopt advantage advantages applied assume assumption assumptions avoid axis bandwidth cardiac channel cine clinically close closed combines computation computationally computed condition consistency consistent constraint consuming content convolution cord corporate correlated correlation correlations derived described ding directly dynamic easily efficiently equation equations estimation evaluated every exists expect extra form free fully gain global healthy heart horizontal implicit improve improved improves incorporating instead institute intensive intrinsic iterative kernel least linear load local long lung matrix missing multiplication near needed noise null offers operation parallel penetration pixel poor priori property propose proposed quality random real reality recently reconstructed reconstruction reconstructs reduce reducing reduction represent resolution robustness sampled scanner scenario self series sets several short simplify since situations skipped slice slower solution solutions solve solved solving space speed spinal spirit square statistical support take temporal terms theory thick traditional trio uncorrelated utilized utilizes utilizing variance vector vectorized vertical views volunteer widely wise