Meeting Banner
Abstract #3350

A Nonlinear ARMA Model for GRAPPA Reconstruction

Yuchou Chang1, Leslie Ying1

1Electrical Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI, United States

IIR GRAPPA incorporates recursive terms to improve conventional GRAPPA, but has the limitation that outliers and noise lead to poor estimation in the recursive coefficients. A novel method using nonlinear ARMA (NLARMA) model is proposed to address the issue in IIR GRAPPA reconstruction. The proposed nonlinear AMRA model improves over the linear MA model used in conventional GRAPPA by incorporating both recursion and nonlinearity. The experimental results demonstrate that the proposed method is able to significantly improve the reconstruction quality of the conventional GRAPPA and IIR GRAPPA in suppressing noise and artifacts.

Keywords

able abstract accuracy address affects aliasing although artifacts attempts auto back bandwidth bottom brain calibration calibrations causes channel coefficients combination computation considered consistence contrast dataset datasets denotes deteriorate effectively electrical engineering equation equations equivalently errors estimation experimental extended final finite formulated function functions gradient improve improved improvement improves impulse in vivo incorporating infinite issue iteratively lead least limitations linear matrix missing model models motivated moving name noise nonlinear nonlinearity novel observation outer outliers part parts phantom plugged polynomial poor press procedures process propose proposed quality recent reconstructing reconstruction reconstructions reconstructs recursion reduce reduction regressive regularization represent represents respectively response retrospectively sets severely solve solving space specifically spin squares step steps still success suppressing takes term terms theory trans unknown update vector