Meeting Banner
Abstract #2919

Localization of Kalman Filtered Temperature Imaging for MR-Guided Thermal Ablations

Joshua P. Yung1, 2, David Fuentes1, John D. Hazle1, 2, Jeffrey S. Weinberg3, R. Jason Stafford1, 2

1Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States; 2The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States; 3Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States

Synopsis. Minimally-invasive MR-guided thermal therapies have been combined with model-based filters to improve precision and robustness of MR thermometry. When using a model, such as the bioheat transfer equation, to provide temperature estimate predictions, the propagation of the covariance matrix becomes computationally intensive. In this work, a characterization study was performed to investigate the effect of localization and model error covariance in order to provide a reduction in computational complexity while in the presence of simulated artifacts. Dice similarity coefficient and RMS error was used to evaluate the temperature model-based Kalman filter temperature estimates with MRTI and post-treatment imaging.

Keywords

ability able accurate amount approximated approximates artifact available bands bottom boundary cancer capabilities characterization coefficient coil combination complete computational consists contaminations correlation corrupted corruption course covariance critical damage dataset decreased degrees delivery dense detecting dice diseases dose dropped drops dynamically easily efforts entirely equation error errors evaluation exceeding execution exploit exposure exposures fiber filter filtered freedom frequency frontal generate gradients graduate guided help history increasing indicated instances intensive intervention invasive investigate irradiation larger laser literature lobe local localization loss materials matrix measuring metrics minimally minimize model models monitoring neurosurgery optimal option overlap permutations perturbed physics pixel positioned predicted predicting predictive presence prevent process propagation proton quantify real recent recurrent reduction relies removal replace represent respective review safety scanner school section separated simulate simulated space sparse squared storage studies substantially susceptibility temperature temporal therapy thermal thermally threshold throughout tissue tolerance transfer treatment treatments uncertainty underlying uniform uniformly varied verification weather whole wise