Meeting Banner
Abstract #2821

Noise-Related Variance of Functional Networks

Hu Cheng1, Aina Puce1

1Indiana University, Bloomington, IN, United States

A simple method is proposed to estimate the variance of resting state functional network originated from residual noises in the MRI signal. The variance from noise is compared with the total variance between networks from different time periods. The results suggest that a substantial amount of variance of the functional network comes from the intrinsic noise that is not coupled with the coherences of different brain regions. Sampling more time points can effectively reduce the noise-related variance. Another effect of residual noise is reduction of the correlation coefficient, which can be estimated from the variance of network.

Keywords

addition additionally agreement amount amplitude anatomical another approximated assuming automated band bootstrap brain cardiac cerebral characterize clear close coefficient cognitive coherences comes computation compute computed confidence connectivity constant constructed contaminated contribute correlation cortex coupled courses dashed decreases defined dependence dependent derive derived described determined deviation divided double dynamics easy effective effectively elements ended equations equivalent essential even exactly example explored extracted filtered frequency functional functions gives glover good hand help hypothesis impacts increasing indicate integrity interval intrinsic investigation known labeling limited little longer match matrix might minutes motion nearly needs network networks nodes noise noises originated period periods perspective physiological play prediction previously proposed puce rage recently reduction regressing related relation residual resolution respectively respiratory rest resting rise role root runs sampling scanned scanner segment series significantly simple slightly slowly source square static subject subjects subsequently subsets substantial suggest term theory tool trio true underestimated underestimation upper variance varies white written