Meeting Banner
Abstract #2449

Rician Noise Removal in Diffusion Kurtosis Imaging

Nanjie Gong1, Chun Sing Wong1, Sau May Wong2, Bart ter Haar Romeny2

1Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; 2Biomedical Engineering, University of Technology Eindhoven, Netherlands

In the past decade, many denoising algorithms have been proposed for MR images. Most often the Gaussian filter is used for this purpose. However it has already been proven that noise on the magnitude MR images is not Gaussian, but Rician distributed. Gaussian filters are used in general for the reason that the noise distribution of magnitude MR images with high signal-to-noise ratio (SNR) can be well approximated with a Gaussian distribution. Diffusion Kurtosis Imaging (DKI), an extension of Diffusion Tensor Imaging (DTI), generates images with a lower SNR compared to images obtained with DTI due to the need of larger and more b-values. Subsequently the noise distribution in obtained DKI MR images can no longer be treated as Gaussian distributed. In this study, two Rician filters, namely the non-local mean Rician filter (NLM) and the non-local maximum likelihood filter (NLML), and Gaussian filter are investigated on their denoising performance on DKI MR images. Results obtained from the simulations show more accurate derived parameters from DKI images denoised with the Rician filters than those from images denoised with the Gaussian filter. In addition, regarding the parameters� value derived from real human data, there are significant differences between those from data filtered with the Rician filters and those from data filtered with Gaussian filter.

Keywords

according accuracy accurate accurately adaption added addition already anisotropy applied approximated artificially averaging best biomedical brain calculating calculations china choosing considered convex coordinates correspond corrupted create decade defined derived described designed diagnostic diffusion diffusivity direct distributed distribution done engineering error especially estimation evaluating every experiment explanation explore extension filter filtered filters formula fractional free function general generally generated generates gong gradient hong house human illustrated imaginary instead intensities intensity investigated kurtosis larger lead likelihood local longer made magnitude many maximizing model namely need neighborhood noise normalized often original outperform outperforms outstrips past people percentage performance performances phys pixel pixels plotted possibly program proposed proven quadratic radiology rather real reason reconstruction regarding removal republic resolution respect scanner script scripts selected series several shot similarity simply simulation simulations sing sqrt subsequently superior surrounding synthetic table takes taking technology tensor treated validated validating varying whole window written