Meeting Banner
Abstract #2397

Novel T2 Relaxometry Using Principal Components Analysis

Ashish Raj1, Kyoko Fujimoto2, Thanh Nguyen, Susan Gauthier2

1Radiology, Weill-Cornell Medical College, New York, NY, United States; 2Neurology, Weill-Cornell Medical College, New York

T2-relaxometry, the numerical separation of differently relaxing tissue components in the brain, is a challenging problem due to ill-posedness, instability and extremely demanding requirement for SNR. The resulting myelin water fraction maps are noise, unstable and frequently diagnostically uninterpretable. Here, we completely side-step the inverse problem and instead separate the differentially relaxing components in the brain by principal components analysis (PCA), which is popular in fMRI analysis but has never before been used in T2 Relaxometry. This approach greatly improves computation speed, noise, spatial variations and definition of white matter in the brain.

Keywords

activating agreement anatomic appear applicability axial better biased blue brain brains capture captures capturing cellular chance clear college compelling completely components confirm consisting constants constraints contains contribution decay decomposition deduce definition demanding desired desktop detailed detection diagnostically difficult disorders distinct distribution distributions echoes especially evaluations example examples execution exponential exponentially extra extracted extremely fact fast fitting fraction functionally give graham greatly green handle healthy highly improved improves insight instead intra inverse larger least logarithmically many maps matrix medical minutes models modes much noise note novel numerical optimized overall owes peak peripheral place pool pools prep principal problem propose quantifying radiology rank reasonable reduce reduced regularization relaxing rely require resolve respective rise scale scanners sclerosis selected separate separation simply singular site slice slices spaced spacing spatial spatially speed spin spiral squares stepping studies summing temporal temporally theory thereby thin think tissue toward typically variation vector water white whole whose wide width write