Meeting Banner
Abstract #2226

Estimation of Mean Noise Propagation in SENSE for Generation of Optimized Undersampling Patterns

D. Nickel1, R. Grimm2, K. T. Block3

1MR Applications Development, Healthcare Sector, Siemens AG, Erlangen, Germany; 2Pattern Recognition Lab, University of Erlangen-Nuremberg, Erlangen, Germany; 3Department of Radiology, NYU Langone Medical Center, New York, United States

Incoherent undersampling of k-space is often desirable for iterative reconstruction techniques like Compressed Sensing. On the other hand, noise propagation from parallel imaging is best explored for regular undersampling patterns. Instead of focusing on the local noise enhancement in the image, typically expressed through g-factor maps, we derive an expression for the averaged noise amplification, which can be used as a measure to evaluate given undersampling patterns. Because the expression can be evaluated efficiently, it can be used during the generation of low-noise sampling patterns, mainly aiming at 3D acquisitions with incoherent undersampling in 2D.

Keywords

acceleration albeit almost amplification applications approximation array assessment assuming automatic automatically best block blue body certain channel coil coils combined comes computational computationally computed consistent correlation corresponds count covariance dataset datasets deformed delta demanding depends desired determined deviate diagonal direct disc discussed divided efficiently enables encoding enhancement entries equal equally especially evaluated evaluation even expense expensive expression flash freedom fully furthermore generated generation give head hermitian identical incoherent incoherently interference introduced invariant inversion iterative local look magnetization make materials matrix measure middle minimize noise norm normalized noted novel numerical object observation offer offering operation optimal optimized parallel pattern patterns peak phantom pixel pixels positive potentially practice profiles projection propagation properties proposed qualitative readout reconstructed reconstruction reduced regular residual retrospectively routine sample sampled sampling schemes sector selecting sense sensitivities several since slices smoothly space spine squared strength strongly sums system theory trace trajectory transform transformations trying understood useful validate variance varying vector