Meeting Banner
Abstract #2225

Cross Sampled Nonlinear GRAPPA for Parallel MRI

Haifeng Wang1, Yuchou Chang1, Dong Liang2, King F. Kevin3, Leslie Ying1

1Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States; 2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; 3Global Applied Science Laboratory, GE Healthcare, Waukesha, WI, United States

A novel data acquisition method using cross sampling and image reconstruction method nonlinear GRAPPA are integrated to improve the image quality of GRAPPA at high accelerations. Cross sampling is used to acquire the ACS lines, and a nonlinear model is used in reconstruction of the missing k-space data. The integrated method brings together the benefit of cross-sampled GRAPPA in ACS reduction and the benefit of nonlinear GRAPPA in noise suppression. Results from in vivo experiments demonstrate the proposed method is able to reduce the aliasing artifacts in GRAPPA without compromising SNR when a high net reduction factor is used.

Keywords

able abstract academy acceleration accelerations accuracy achieve acquisition addition advanced aliasing allows applied arrows artifacts auto available bandwidth benefits blocks brings calibration cause channel china coefficient coefficients coil coils columns combined commercial compromising computer correct cross dataset denotes dong electrical engineering evaluated final fully global head illustrates improve in vivo inconsistency institutes integrated integrates interpolation iterative king knowledge laboratory matrix missing model much named need noise nonlinear novel objective orthogonal outer parallel people poor press procedures prolongs proposed quality reconstruction reconstructions reduce reduced reduction relationship repeated represent represented represents republic residual root sampled sampling scanner science sciences sensitivities space specifically spin squares step superior suppress suppression target technology usually white