Meeting Banner
Abstract #2081

Parameter Estimation of the BOLD FMRI Model Within a General Particle Filter Framework

Imali Thanuja Hettiarachchi1, Shady Mohamed2, Saeid Nahavandi2

1Centre for Intelligent Systems Research, Deakin University, Geelong, VIC , Australia; 2Centre for Intelligent Systems Research, Deakin University, Geelong, VIC, Australia

This work demonstrates a novel Bayesian learning approach for model based analysis of Functional Magnetic Resonance (fMRI) data. We use a physiologically inspired hemodynamic model and investigate a method to simultaneously infer the neural activity together with hidden state and the physiological parameter of the model. This joint estimation problem is still an open topic. In our work we use a Particle Filter accompanied with a kernel smoothing approach to address this problem within a general filtering framework. Simulation results show that the proposed method is a consistent approach and has a good potential to be enhanced for further fMRI data analysis.

Keywords

activation activities actual address application applied apply approaches approximate approximating approximation argue assume attempts axis balloon become block blood bold bottom brain cerebral collectively compelling consider constant context convergence curse decade decay density describes design differential difficult dimensionality discretization distributions durations dynamic dynamics estimating estimation even ever experimental extensively feedback filtering filters final fitting flow focus form forward framework frank full functional general generated give held implementation importance indicated input instance instrumental intelligent interpretation intervals issue issues joint learning long mechanism miller mixture model models motor must named neural noise nonlinear novel open ordinary overcoming oxygenation paper particle particles path physiological posterior posteriori practically price primary priors problem process processing promising proposed regulatory relatively reported response responses royal sampling sates scheme sequential series simple simulated simulation since smoothing society solution statistical stimulus subjects subscript suffer supplementary supplemented synthetically system takes though tracking transactions transit triggers tutorial typical uncertainly validity variance version