Meeting Banner
Abstract #1948

Improved Vascular Model -Based Analysis for DSC-MRI Perfusion Quantification

Amit Mehndiratta1, Bradley J. MacIntosh2, David E. Crane2, Stephen J. Payne3, Michael A. Chappell3

1Institute of Biomedical Engineering , University of Oxford, Oxford, Oxfordshire, United Kingdom; 2Medical Biophysics, University of Toronto, Toronto, ON, Canada; 3Institute of Biomedical Engineering, University of Oxford, Oxford, Oxfordshire, United Kingdom

A vascular model-based Bayesian solution for perfusion quantification of DSC-MRI has previously been proposed. However, estimates from the method are potentially biased due to the use of priors estimated from the data within the analysis. Here a modification is proposed that introduces a further parameter into the model resulting in higher accuracy and providing an independent estimate of MTT.

Keywords

absolute achieving addition arbitrary arising arrival axial best bias biased biomedical bolus brain calculating calculation chosen circled clinical contrast crane curves deconvolution delay derived disease distributed distribution effectively empirical engineering error errors expected expo exponential fact final fitting flow free function generated gives highly hire hods illustrates improved include included independent inform known lead like linear mate mated matrix medical meters model modified network noise origin original oxford parallel particular pendent potentially previously prior priors processing product proposed reasonable reflected residue respect return simulated simulation singular slice solution speciously still susceptibility table tissue tracer transit trio typically unction underestimated validation vascular whereas whilst