Meeting Banner
Abstract #1947

An Empirical DSC-MRI Data Model Including First-Pass, Recirculation and Leakage Components Fully Characterises Signal Changes in Tumours and Normal Brain

Matthew R. Orton1, James A. d'Arcy2, Keiko Miyazaki2, Dow-Mu Koh3, David J. Collins4, Martin O. Leach2

1CR-UK and EPSRC Cancer Imaging Centre , Institute of Cancer Research, Sutton, Surrey, United Kingdom; 2CR-UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Sutton, Surrey, United Kingdom; 3Department of Radiology, Royal Marsden Hospital, Sutton, Surrey, United Kingdom; 4Clinical MRI Unit, Royal Marsden Hospital, Sutton, Surrey, United Kingdom

DSC-MRI methods are designed to measure vascular properties by analyzing the first-pass curves obtained from dynamic T2*-weighted imaging. The presence of recirculation and leakage will bias these measures, which can be reduced by cropping the data to exclude these features. However, useful information may be contained in the cropped data and manually selecting the cropping point is time consuming. In this abstract we present an empirically motivated model that can be fitted to DSC-MRI data that avoids the need to define cut-off times and accurately fits all the data from all pixels, including first-pass, recirculation and leakage components.

Keywords

abstract accounting accurately acknowledge acquisition additional affected agree almost amplitude appears apply arrives assuming avoids bias biomedical blood brain broader cancer causes challenging complex component components concentration constant constants constraints contained content continued contrast convolved cosine cropping curve curves define delay described designed difficult directly displaying dominated done dynamic emblem empirical empirically enables examination example exclude exponential feasibility feasible features find fits fitted fitting flow form forward full fully function funding give global green hand health hospital hypo idea included input inside instead inverse kingdom largely leakage leaky least local loss made makes matrix measures minimized model modeled models motivated much must need negative normalized observe overall particular pass passes patient period pink pixel placed positive presence principle quantified quantify received recirculation reduces related reported residuals royal sense shine similarly slices space squares starts surrey susceptibility table taken term tertiary tissue tissues transit twice variate volume washout whilst white whole wise