Meeting Banner
Abstract #1922

Diffusion and Multiple Orientations from 1.5 MR Systems with Limited Gradient Tables

Sylvain Louis Merlet1, Rachid Deriche2, Kevin Whittingstall3, Maxime Descoteaux4

1Athena Project-Team, INRIA, Sophia Antipolis , Mditerrane, France; 2Athena Project-Team, INRIA, Sophia Antipolis, Mditerrane, France; 3Radiology department, Universit de Sherbrooke, Qubec, Canada; 4Sherbrooke Connectivity Imaging Laboratory, Computer Science Departement, Universit de Sherbrooke, Qubec, Canada

Diffusion MRI enables the quantification of water diffusion, influenced by the structure of biological tissues. While recent advances enable to recover complex fiber geometries using diffusion measurements along various sampling schemes some older MR systems work with limited gradient tables ,designed for Diffusion Tensor Imaging (DTI).

Keywords

acceptable accurate accurately achievable acquisition acquisitions advances advantage agreement allow analytical angular arising assumption attempted available basis better blocked blue brain clinically coded coefficients combination combined coming complex compressed computed concerning connectivity coronal course crossing dataset described designed diffusion displacement distribution distributions done eigenvector enable enables ensemble every extraction fact feasible features fiber fibers fixed formulas full function furthermore geometries good gradient green harmonics hence idea important inferred influenced inform institutes knowledge laboratory like limited linear maintain make media minimization minutes model models molecules nevertheless nonetheless normalized note older orientation orientations phenomenon physics played possibility preliminary press probability problem process processing promoting propagator prove quality quantification radial radii recent reconstruct reconstruction reconstructions recover reduced relatively represent representation represents resolve respectively richer sampling schemes science sensing shell shore similarly smoothness solid sparse sparsity spherical spread structure system systems tables tensor tensors theory tissues user users varies want water wavelets whereas white workshop