Meeting Banner
Abstract #1917

Multi-Scale Characterization of White Matter Tract Geometry

Peter Savadjiev1, Yogesh Rathi1, Martha E. Shenton1, Sylvain Bouix1, Carl-Fredrik Westin2

1Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; 2Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States

We introduce a novel method for computing multi-scale fibre tract shape and geometry based on the differential geometry of curve sets. By measuring the variation of a curve's tangent vector at a given point in all directions orthogonal to the curve, we obtain a ``2D dispersion orientation distribution function (ODF)'' at that point. That is, we compute a function on the unit circle which describes the extent to which the fibres disperse, or fan, along each direction on the circle. Our formulation is then easily incorporated into a continuous scale-space framework.

Keywords

advantages affect allows automatically averaging axial basis brain captures central characterization circle coil colored complementary compute computed computes computing conjunction connecting consisted construct constructed contained continuous cortical covariant crossing currently curve curves defined denoted dependence derived described deviate differential diffusion directly discrete disk dispersion distortions double eddy electric elegant equally essence euclidean explicit extent fanning feature features fiber field fields filtered function general generate geometry global highlighted hospital illustrate important indicates individual inherently input laboratory limitation limitations limited local lost manually measures medical model models modes neighborhood note optimized option orientation originate orthogonal output part peter plans population prior psychiatry quantification radius recognizing recovered reduce refer reflected related represent reproducible requiring resolve sampling scale scales scanner school seek selected sense sets shape shaped since situated slice slices smallest smooth spaced spatial stable stem steps strongly structure surfaces surfer tangent tensor torsion tract tracts treated unit variation vector vectors white whole women