Meeting Banner
Abstract #0849

Predicting Spatial Patterns of Recurrence for Glioblastoma Using Multi-Parametric MRI Classification

Vanessa H. Clark1, Michel Bilello1, Priyanka Bhatt1, Xiao Da1, Elias Melhem1, Arastoo Vossough1, Ron Wolf1, Christos Davatzikos1, Ragini Verma1

1Radiology, University of Pennsylvania, Philadelphia, PA, United States

We aim to provide a spatial map of predicted tumor recurrence in subjects with glioblastoma which can be used to guide treatment towards improving quality of life and survival. Using 14 subjects and 9 imaging modalities, we use support vector machine classification to generate a probability map representing tissue with imaging characteristics similar to recurring/non-recurring tissues. With average 97% specificity, 27% sensitivity, and 0.79 AUC, these probability maps show potential for multimodal imaging and classification to predict patterns of tissues likely to recur that are not obvious to the human eye, including prediction of tumor recurrence at specific time intervals.

Keywords

abbreviations ability abnormal accuracies accuracy acquisition added additional axial bottom capture cerebral classification classifier consistent correction cross curve deviation diagnosed difficult diffusion diffusivity distant dose drawn earlier enhanced even expert farther feature find finding flair focused fractional generated grade grim healthy hope human ignored improve improved incidence included indicate infiltrative inhomogeneity institution intermediate intra investigated just knowledge known landmarks life location machine manual manually maps modalities model months nearby nearer necrosis nevertheless noses note operative originated overlaid patients patterns planning post practice predicted prediction predictions prior probability processing produce produced progressed progression promise quality quickly quite radial radiology radiotherapy recur recurrence recurring relevant resection reveal section segmentation selected sens sensitivity site skull smoothing spatial spec specificity statistics stripping subj subject subjects subsequent summary surprisingly survival table tends tensor therapy thinking tissue tissues tool tools trained treatment tumor tumors ultimately useful validated variable variate varied various vector volume whereas wolf years