Meeting Banner
Abstract #0193

Non-Parametric and Non-Linear DSC-MRI Post-Processing Methods Predict Underlying Vascular Histopathology in Patients with Treatment-Naive GBM

MAGNA25Emma Essock-Burns1, 2, Joanna J. Phillips3, 4, Annette M. Molinaro3, Janine M. Lupo2, Soonmee Cha, 23, Susan M. Chang3, Sarah J. Nelson, 15

1Graduate Group in Bioengineering, UC Berkeley/UC San Francisco, San Francisco, CA, United States; 2Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA, United States; 3Neurological Surgery, UC San Francisco, San Francisco, CA, United States; 4Department of Pathology, UC San Francisco, San Francisco, CA, United States; 5Bioengineering and Therapeutic Sciences, UC San Francisco, San Francisco, CA, United States

 

Keywords

abnormal accurately addressing adjusted agent anti assist barrier bioengineering biology biopsy blinded blood booth bottom brain burden burns cerebral challenge characterized clinical coincide collected common comp complex correction correctly curve degree delicate dependent determine diagnosed diameter dose elevated enhancement example exist existed expensive experienced features fitting flair fold gamma general goal graded gradient grant greater guide guiding hallmark help heterogeneity historically human hyperplasia identified identifying illustrates included influence known lamina leakage lesion likelihood limitation limitations limits linear location malignant marginally measures mens metric mined model morphology naive native near noninvasive nonlinear noon normalization ordinal overlaid parametric patient patients pink planar post predicted predicting predictive predictor predictors presence processing random represent resolution resultant risk scale selecting selection setting significantly simple slice specimen specimens spherical staining strong support surgery target targets therapeutic therapies thick tissue toward tumor underlying unit validated validation variate vascular viii volume white