Meeting Banner
Abstract #0159

Automated Area at Risk Detection Using Myocardial T1 Maps Acquired Pre- And Post Contrast Agent Administration

Tobias Voigt1, Zhong Chen2, Christian Buerger, 23, Valentina Puntmann2, Reza Razavi2, Tobias Schaeffter2, Andrea J. Wiethoff, 24

1Philips Research, London, United Kingdom; 2King's College London, London, United Kingdom; 3Philips Research, Hamburg, Germany; 4Philips Healthcare, Guildford, United Kingdom

This study presents a new method for automated segmentation of blood pool, infarct area, healthy myocardium and grey zone. A clustering algorithm was implemented based on two quantitative T1 maps acquired before and after contrast agent administration. First in vivo results obtained in patients with known ischemic cardiomyopathy (ICM) are shown and compared to late enhancement images where good agreement was observed.

Keywords

acquisition administration agent agreement another approximately artifacts assessment automated automatically belonging benefit best blood blue blur breathing characteristic clear clinical clustering clusters college colors contrast core dedicated defibrillator defined delays detection determine diastole enhancement entire examples exhibits expected formed future fuzzy good hamburg healthy identify implemented in vivo inaccuracy include infarct infarction injection intensity inversion king kingdom known late limitation making male maps materials might minutes modification motion myocardial myocardium navigators neither noise overlapping patients plot pool post probability prone proposed quantitative recently recovery resolution risk roes scanner scar scatter segment segmentation segmented selected separated shortcoming studies therapy triggered underwent valuable ventricle window yellow zone